Проблема: при обработке больших объемов данных важно не только их собрать, но и правильно структурировать для дальнейшего анализа. Обычные SQL-запросы могут стать громоздкими и сложными, особенно когда речь идет о масштабируемости и производительности.
Решение: в книге «Analytics Engineering with SQL and dbt: Building Meaningful Data Models at Scale» авторы описывают, как использовать dbt (data build tool) для построения и трансформации данных. dbt позволяет создавать чистые, поддерживаемые и легко масштабируемые модели данных, используя простые SQL-запросы, что значительно ускоряет процессы аналитики.
Пример кода:
-- Пример модели dbt для расчета среднего чека по категориям товаров WITH base AS ( SELECT category_id, SUM(order_amount) AS total_sales, COUNT(DISTINCT order_id) AS total_orders FROM raw.orders GROUP BY category_id ) SELECT category_id, total_sales / total_orders AS avg_order_value FROM base
Преимущества:
— Dbt позволяет быстро разрабатывать и тестировать модели данных, сокращая время от идеи до реализации. — Подходы, описанные в книге, позволяют строить модели, которые легко масштабируются по мере роста данных. — Акцент на совместной работе между аналитиками и инженерами способствует более эффективному решению задач.
Еще больше полезных книг — в нашем канале @progbook
Проблема: при обработке больших объемов данных важно не только их собрать, но и правильно структурировать для дальнейшего анализа. Обычные SQL-запросы могут стать громоздкими и сложными, особенно когда речь идет о масштабируемости и производительности.
Решение: в книге «Analytics Engineering with SQL and dbt: Building Meaningful Data Models at Scale» авторы описывают, как использовать dbt (data build tool) для построения и трансформации данных. dbt позволяет создавать чистые, поддерживаемые и легко масштабируемые модели данных, используя простые SQL-запросы, что значительно ускоряет процессы аналитики.
Пример кода:
-- Пример модели dbt для расчета среднего чека по категориям товаров WITH base AS ( SELECT category_id, SUM(order_amount) AS total_sales, COUNT(DISTINCT order_id) AS total_orders FROM raw.orders GROUP BY category_id ) SELECT category_id, total_sales / total_orders AS avg_order_value FROM base
Преимущества:
— Dbt позволяет быстро разрабатывать и тестировать модели данных, сокращая время от идеи до реализации. — Подходы, описанные в книге, позволяют строить модели, которые легко масштабируются по мере роста данных. — Акцент на совместной работе между аналитиками и инженерами способствует более эффективному решению задач.
Еще больше полезных книг — в нашем канале @progbook
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
Telegram announces Search Filters
With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.
Библиотека джависта | Java Spring Maven Hibernate from hk